試 題

[第2節]

科目名稱	分子生物學
条所組別	生物醫學科學系分子生物

-作答注意事項-

- ※作答前請先核對「試題」、「試卷」與「准考證」之<u>系所組別、科目名稱</u>是否相符。
- 預備鈴響時即可入場,但至考試開始鈴響前,不得翻閱試題,並不得書寫、
 畫記、作答。
- 2. 考試開始鈴響時,即可開始作答;考試結束鈴響畢,應即停止作答。
- 3.入場後於考試開始 40 分鐘內不得離場。
- 4.全部答題均須在試卷(答案卷)作答區內完成。
- 5.試卷作答限用藍色或黑色筆(含鉛筆)書寫。
- 6. 試題須隨試卷繳還。

本科目共 4 頁 第 1 頁

科目名稱:分子生物學

系所組別:生物醫學科學系分子生物

	、選擇題: (30題, 每題2分, 共計60分)
1.	Which of the following amino acids is hydrophobic?
	(A) Serine (B) Lysine (C) Glutamate (D) Valine
2.	The strand on which DNA replication is discontinuous is called the:
	(A) Leading strand (B) Lagging strand
	(C) Template strand (D) Major strand
3.	Which of the following is not a stop codon?
	(A) UGG (B) UGA (C) UAG (D) UAA
1.	Which of the following statements is true?
••	(A) RNA lacks the base thymine (which is found in DNA) and has uracil instead.
	(B) RNA is usually double-stranded, but DNA is usually single-stranded.
	(C) RNA has the sugar deoxyribose, but DNA has the sugar ribose.
	(D) RNA contains three different nucleotides, but DNA contains four different nucleotides.
	(b) MA contains three uniterest muchosides, sur 21 12 contains 2011
5.	Which of the following protein is not required for DNA replication in E. coli?
, J &	(A) DNA helicase (B) Primase (C) DNA ligase (D) DNA glycosylase.
	(II) Divinouse (D) I I I I I I I I I I I I I I I I I I I
6.	Which activity of DNA polymerase I is also called "proofreading" activity?
	(A) 5' to 3' polymerase activity (B) 3' to 5' polymerase activity
	(C) 5' to 3' exonuclease activity (D) 3' to 5' exonuclease activity
7.	Which subunit of DNA polymerase III increases its processivity?
	(A) α subunit (B) γ complex
	(C) ε subunit (D) β subunit
8.	Which transposable element does not use an RNA intermediate to insert into new sites in the
	genome of the host cell?
	(A) DNA transposons (B) Viral-like retrotransposons
	(C) Retroviruses (D) Poly-A retrotransposons
	Which of the following histone proteins is not in the core nucleosome particle?
9.	- · · · · · · · · · · · · · · · · · · ·

本科目共 4 頁 第 2 頁

科目名稱:分子生物學

系所組別:生物醫	學科學系分子生	物		
(B) synthesis of (C) synthesis of	RNAs with DNA proteins with RI proteins from D	As as the templates. NAs as the messeng	er.	
11. In <i>E. coli</i> , which	of the following	nrotein is respons	ible for detecting mis	matched DNA?
(A) MutL		(C) MutS	(D) RecJ	
12. How many hydr	rogen bonds are	formed between or	ie A:T base pair?	
(A) 1	(B) 2	(C) 3	(D) 4	
(A) PCR		ues is used for amplifying DNA? (B) Western blotting (D) Microarray		
(C) Southern bl	otting	(D) Mic	roarray	
14. If a species cont contain? (A) 28%		ne (A) in its DNA, v (C) 44%		anine (G) would it also
15. Which of the fo	llowing molecule (B) Ku70	es is not involved in (C) RuvA	the homologous reco	mbination?
16. In prokaryote, t start site is assig (A) -25 (B) -1	gned as +1.	ds to the TATA box (D) +4	which is located as ?	site if the transcriptional
17. Following the p (A) Major groot (C) Backbone	ve (B) Mi	, which region does inor groove y region except AT		ding protein) bind to?
translational eff	ficiency if the un	tions and the corred derline A of <u>A</u> UG a +4 (C) -25 and -1		nportant for the
19. tRNA is transcr (A) RNA polym (C) RNA polyn	erase I (1	B) RNA polymeras D) RNA-dependent	e II t RNA polymerase (R	dRp)

本科目共 4 頁 第 3 頁

科目名稱:分子生物學

系所組別:生物醫學科學系分子生物

during translation? (A) 23S rRNA (B) 5.8S rRNA (C) 5S rRNA (D) 16S rRNA 1. Which structure is NOT classified as the DNA binding motifs? (A) Zinc finger (B) bZIP/bHLH (C) Proline-rich (D) Homeodomains 2. Proteins that phosphorylate the CTD (C-Terminal Domain) of RNA polymerase largest subunit in transcriptional initiation and elongation steps, respectively: (A) both by TAF1 (B) both by TFIIH (C) by TFIIH and pTEFb (D) by TFIIH and TFIIS 3. The shape of intron released by trans-splicing is? (A) lariat (B) circular (C) linear (D) Y-shape 4. In the structure of mature tRNA, the three bases in the most 3' end are: (A) 5'-AAC-3' (B) 5'-CCA-3' (C) 5'-ACC-3' (D) 5'-CAA-3' 5. In the life cycle of λ phage, which description for the binding ability of cro is correct? (A) O _R 1 > O _R 2 > O _R 3 (B) O _L 1 = O _L 2 = O _L 3
 Which structure is NOT classified as the DNA binding motifs? (A) Zinc finger (B) bZIP/bHLH (C) Proline-rich (D) Homeodomains Proteins that phosphorylate the CTD (C-Terminal Domain) of RNA polymerase largest subunit in transcriptional initiation and elongation steps, respectively:
 (A) Zinc finger (B) bZIP/bHLH (C) Proline-rich (D) Homeodomains 2. Proteins that phosphorylate the CTD (C-Terminal Domain) of RNA polymerase largest subunit in transcriptional initiation and elongation steps, respectively: (A) both by TAF1 (B) both by TFIIH (C) by TFIIH and pTEFb (D) by TFIIH and TFIIS 3. The shape of intron released by trans-splicing is? (A) lariat (B) circular (C) linear (D) Y-shape 4. In the structure of mature tRNA, the three bases in the most 3' end are: (A) 5'-AAC-3' (B) 5'-CCA-3' (C) 5'-ACC-3' (D) 5'-CAA-3' 5. In the life cycle of λ phage, which description for the binding ability of cro is correct?
 2. Proteins that phosphorylate the CTD (C-Terminal Domain) of RNA polymerase largest subunit in transcriptional initiation and elongation steps, respectively: (A) both by TAF1 (B) both by TFIIH (C) by TFIIH and pTEFb (D) by TFIIH and TFIIS 3. The shape of intron released by trans-splicing is? (A) lariat (B) circular (C) linear (D) Y-shape 4. In the structure of mature tRNA, the three bases in the most 3' end are: (A) 5'-AAC-3' (B) 5'-CCA-3' (C) 5'-ACC-3' (D) 5'-CAA-3' 5. In the life cycle of λ phage, which description for the binding ability of cro is correct?
transcriptional initiation and elongation steps, respectively: (A) both by TAF1 (B) both by TFIIH (C) by TFIIH and pTEFb (D) by TFIIH and TFIIS 3. The shape of intron released by trans-splicing is? (A) lariat (B) circular (C) linear (D) Y-shape 4. In the structure of mature tRNA, the three bases in the most 3' end are: (A) 5'-AAC-3' (B) 5'-CCA-3' (C) 5'-ACC-3' (D) 5'-CAA-3' 5. In the life cycle of \(\lambda \) phage, which description for the binding ability of \(\frac{\cdot cro}{\cdot cro} \) is correct?
 (A) both by TAF1 (B) both by TFIIH (C) by TFIIH and pTEFb (D) by TFIIH and TFIIS 3. The shape of intron released by trans-splicing is? (A) lariat (B) circular (C) linear (D) Y-shape 4. In the structure of mature tRNA, the three bases in the most 3' end are: (A) 5'-AAC-3' (B) 5'-CCA-3' (C) 5'-ACC-3' (D) 5'-CAA-3' 5. In the life cycle of λ phage, which description for the binding ability of cro is correct?
 (C) by TFIIH and pTEFb (D) by TFIIH and TFIIS 3. The shape of intron released by trans-splicing is? (A) lariat (B) circular (C) linear (D) Y-shape 4. In the structure of mature tRNA, the three bases in the most 3' end are: (A) 5'-AAC-3' (B) 5'-CCA-3' (C) 5'-ACC-3' (D) 5'-CAA-3' 5. In the life cycle of λ phage, which description for the binding ability of cro is correct?
 (A) lariat (B) circular (C) linear (D) Y-shape 4. In the structure of mature tRNA, the three bases in the most 3' end are: (A) 5'-AAC-3' (B) 5'-CCA-3' (C) 5'-ACC-3' (D) 5'-CAA-3' 5. In the life cycle of λ phage, which description for the binding ability of cro is correct?
 4. In the structure of mature tRNA, the three bases in the most 3' end are: (A) 5'-AAC-3' (B) 5'-CCA-3' (C) 5'-ACC-3' (D) 5'-CAA-3' 5. In the life cycle of λ phage, which description for the binding ability of <u>cro</u> is correct?
 (A) 5'-AAC-3' (B) 5'-CCA-3' (C) 5'-ACC-3' (D) 5'-CAA-3' 5. In the life cycle of λ phage, which description for the binding ability of cro is correct?
5. In the life cycle of λ phage, which description for the binding ability of <u>cro</u> is correct?
(A) $O_R 1 > O_R 2 > O_R 3$ (B) $O_L 1 = O_L 2 = O_L 3$
(C) $O_R1 < O_R2 < O_R3$ (D) $O_L1 > O_L2 > O_L3$
6. Pre-miRNA can be digested into mature miRNA by?
(A) Dicer (B) Argonaute (C) DGCR8/ Pasha (D) Slicer
7. In the processing of precursor rRNA, which small RNA is necessary:
(A) snRNA (B) snoRNA (C) lncRNA (D) miRNA
8. Which enzyme does NOT involved in RNA editing?
(A) endo-nuclease (B) exo-nuclease
(C) Terminal Uuridylyl Transferase (TUTase) (D) RNA triphosphatase
9. The protein-protein interaction can be detected by:
(A) Far-western blot (B) Western blot (C) Northern blot (D) Southern blot
0. The topic for 2020 Nobel Prize in Physiology or Medicine is about:
(A) HCV (B) CRISPR (C) oxygen availability (D) cancer immunotherapy

科目名稱:分子生物學

本科目共 4 頁 第 4 頁

系所組別:生物醫學科學系分子生物

- 二. 簡答題:(10題, 每題2分,共計20分)
- 31. Name the two most common secondary structures of proteins.
- 32. What enzyme removes excessive supercoiling ahead of the replication fork?
- 33. Name two types of histone modification.
- 34. Name two molecules that are involved in mismatch repair.
- 35. Name two types of DNA damages.
- 36. Please explain the Wobble concept.
- 37. The small RNA that is required for mRNA splicing.
- 38. The two types for transcriptional termination in prokaryote.
- 39. What are the three components of translational complex eIF4F?
- 40. Please explain the function(s) of piwiRNA.
- 三. 問答題: (4題, 共計20分)
- 41. Please describe the molecular mechanism of the initiation process during E. coli DNA replication. (6 points)
- 42. Please describe the molecular process (including all the molecules involved) of homologous recombination in *E. coli.* (4 points)
- 43. Please describe the <u>model</u>, <u>RNA sequence</u>, and <u>protein</u>(s) that are required for transcriptional termination in eukaryote, respectively. (6 points)
- 44. Please describe the protocol and application of CHIP (chromatin immunoprecipitation). (4 points)